
LLNL-CONF-655084

Modeling the Impact of Reduced
Memory Bandwidth on HPC
Applications

A. Tiwari, A. Gamst, M. Laurenzano, M. Schulz, L.
Carrington

May 27, 2014

EuroPar 2014
Porto, Portugal
August 25, 2014 through August 29, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Modeling the Impact of Reduced Memory
Bandwidth on HPC Applications

Ananta Tiwari1, Anthony Gamst2, Michael A. Laurenzano3, Martin Schulz4,
Laura Carrington1

1 Performance Modeling and Characterization Lab, San Diego Supercomputer Center
2 Computational and Applied Statistics Lab, San Diego Supercomputer Center
3 Department of Computer Science and Engineering, University of Michigan

4 Lawrence Livermore National Laboratory(LLNL)
tiwari@sdsc.edu, acgamst@math.ucsd.edu, mlaurenz@eecs.umich.edu,

schulzm@llnl.gov, lcarring@sdsc.edu

Abstract. To deliver the energy e�ciency and raw compute throughput
necessary to realize exascale systems, projected designs call for massive
numbers of (simple) cores per processor. An unfortunate consequence
of such designs is that the memory bandwidth per core will be signifi-
cantly reduced, which can significantly degrade the performance of many
memory-intensive HPC workloads. To identify the code regions that are
most impacted and to guide them in developing mitigating solutions, sys-
tem designers and application developers alike would benefit immensely
from a systematic framework that allowed them to identify the types of
computations that are sensitive to reduced memory bandwidth and to
precisely identify those regions in their code that exhibit sensitivity. This
paper introduces a framework for identifying the properties in computa-
tions that are associated with memory bandwidth sensitivity, extracting
those same properties from HPC applications, and for associating band-
width sensitivity to specific structures in the application source code.
We apply our framework to a number of large scale HPC applications,
observing that the bandwidth sensitivity model shows an absolute mean
error that averages less than 5%.

1 Introduction

The trend towards multi-core systems has accelerated over the last decade and
has had a profound impact on HPC systems. Multi-core designs allow for greater
energy e�ciency by increasing the compute performance of the processors through
replicating simple and more energy conserving cores on a processor chip, poten-
tially at lower voltages, without requiring complex and power hungry single core
enhancements. With energy and power often being cited as the most critical
issues on the road to practical exascale systems, it is foreseeable that this trend
will continue. Some studies already project hundreds to thousands of cores per
processor [7]. While multi-core systems certainly o↵er advantages in terms of
energy e�ciency, they also pose new challenges. As the number of cores per pro-
cessor is scaled up, the memory bandwidth feeding the cores, in particular the
o↵-chip bandwidth which is limited by pin constraints and slowly rising memory

speeds, will result in performance challenges that can seriously undermine the
performance achievable by multi-core processors.

Di↵erent HPC computations will su↵er di↵erent degrees of performance degra-
dation when faced with reduced per core memory bandwidth, i.e., performance
degradation is not a simple linear function of bandwidth vs. performance, but
rather a complex function that also involves the characteristics of the workload
(e.g., arithmetic intensity, memory access patterns and work distribution among
cores). We therefore need a systematic methodology to understand and predict
how sensitive a given computation or algorithm is to reduced per core memory
bandwidth. This paper presents a modeling framework that allows such a char-
acterization and can be used to predict how di↵erent computations within an
application, computational phase or even basic block will behave under a given
reduced memory bandwidth. Our methodology uses fine-grained application and
hardware characterization to build predictive models through machine learning
based models. In particular, we make the following contributions:

– We introduce predictive models for memory bandwidth sensitivity that are
e↵ective across a range of code granularities. We detail the machine learning
algorithm used to construct the models and how to train them using empiri-
cal measurements that capture both data flow and computational properties
of applications.

– We evaluate our models using a diverse set of real scientific workloads. We
show that the framework accurately pinpoints regions within these codes
where reduced bandwidth of current and future generation multi-core sys-
tems could pose significant performance challenges.

– We apply our framework to HYPRE [14], a library for solving large sparse linear
systems of equations, and show how it can accurately predict bandwidth
sensitivity scores for di↵erent solver implementations and thereby help select
implementations that are less sensitive to reduced memory bandwidth.

2 Predicting Performance Sensitivity

The amount of available memory bandwidth can have a crucial performance
impact on the di↵erent computational phases of a large scale application. Un-
derstanding the level of this impact, where in the execution it is occurring, and
algorithmic choices that might minimize this impact are critical for application
developers as the core count on current and future multi-core systems grows.
Performance prediction via fine grain models of an application can address these
questions. Developing such detailed performance models requires a test system
for model validation (Section 2.1), a modeling technique amenable to the com-
plex and diverse space of HPC computations (Section 2.2), and techniques to
capture the details or characterization of computations (Section 2.3).

2.1 Model validation system

To validate that the models accurately predict an application’s sensitivity to
reduced per core memory bandwidth, we need a test system where we can change

the per core memory bandwidth. To design such a system, we first focus on
the parameters involved in determining theoretical memory bandwidth (TBW),
which can be calculated as follows:

TBW = mem freq ⇥ L⇥W ⇥ I (1)

TBW is the product of memory bus frequency (mem freq), the number of lines
of data transferred per clock cycle (L), the bus width (W) and the number of
memory channels (I). The test system that we use in our study consists of DDR-
N (Double Data Rate) DRAM modules on a motherboard that supports dual
channel memory; therefore, L and I parameters are fixed at 2. Bus width W

is 64 bits for our test-bed. Thus, to approximate systems with lesser memory
bandwidth, we rely on changing the mem freq parameter, the frequency of the
memory bus.

While it is not possible, on current systems, to change the memory bus
frequency from the OS-level, modern systems allow choosing between di↵erent
bus frequencies at boot time (through the BIOS setup). Our test system consists
of a single node from the Gordon Supercomputer. The dual-socket node contains
two 8-core 2.6 GHz Intel Xeon E5-2670 (SandyBridge) processors and 64 GB of
DDR3 memory. The default frequency rating of the DDR3 modules is 1333 MHz.
The BIOS setup allows two additional frequencies – 1067 MHz and 800 MHz.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

0
.0

0
8

1
9

2

0
.0

1
6

3
8

4

0
.0

3
2

7
6

8

0
.0

6
5

5
3

6

0
.1

3
1

0
7

2

0
.2

6
2

1
4

4

0
.5

2
4

2
8

8

1
.0

5

2
.1

0

4
.1

9

8
.3

9

1
6

.7
8

M
B

/s
e

c

working set size (MB)

Read Bandwidth as measured by lmbench

1333 MHz
1067 MHz

800 MHz
 0.6
 0.8

 1
 1.2
 1.4
 1.6

4
.1

9

8
.3

9

1
6

.7
8

R
a

tio

Main Memory BW

1333 MHz
1067 MHz
1067 MHz

Fig. 1. lmbench results for di↵erent bus frequencies.

To demonstrate that low-
ering the memory bus fre-
quency in the BIOS results
in a test bed with reduced
per core memory bandwidth,
we present a study that uti-
lizes the memory read band-
width test in lmbench [24]
for the three available mem-
ory bus speeds on our sys-
tem. The results in Figure 1
show four plateaus indicat-
ing the L1 cache, L2 cache,
L3 cache, and main memory
bandwidths for the test-bed
at the three memory bus fre-
quencies. As expected, the L1,
L2, and L3 cache plateaus do not show any change across di↵erent memory bus
frequencies. The fourth plateau, for working set sizes above 4.19 MB, indicates
the main memory bandwidth and shows changes. These changes are replotted in
the histogram sub-graph within Figure 1. In this subfigure the bandwidths for
1067 MHz and 800 MHz are normalized to the bandwidths at 1333 MHz. Memory
read bandwidth is reduced by roughly 17.5% when we decrease the memory bus
frequency by 20% from 1333 MHz to 1067 MHz. This reduction is roughly 37.7%
when going from 1333 MHz to 800 MHz (or by 40%). These results demonstrate

that changing the memory bus frequency allows us to approximate the behavior
we are looking to study – reduced per core memory bandwidth and its e↵ect on
the performance of compute phases within HPC applications.

2.2 Model Methodology

To model the performance sensitivity we utilize machine learning techniques
produce estimates b

F (x) of that function F (x) which is the optimal predictor of
the output variable y from the input variables x = {x

1

, ..., xn} in the class of
functions F , in the sense that

F (x) = argmin
f2F

EL (f(x), y)

where L is a non-negative loss function, for example, L(s, t) = (s � t)2/2, and
Eh(x, y) =

R
h(x, y)dP (x, y) is the expectation operator corresponding to the

joint distribution P of x and y. The function F is an approximation to the
optimal predictor G of y, which may involve input variables other than x and
may be in a di↵erent class of functions from F ; that is, G may have a di↵erent
functional form or be more or less smooth than functions in F . Any particular
technique and specific, finite set of training data {(xi, yi)}ni=1

, will produce a

specific estimate b
F (x) of F (x). Di↵erent data sets and di↵erent techniques will

generally produce di↵erent estimates.
There are numerous approaches to this problem, each with various tradeo↵s

in terms of e�ciency, stability, convergence and interpretability. In this work, we
take a generic approach to the machine learning problem, using the Gradient-

Boost, Multiple Additive Regression Tree (MART) approach of Friedman [15],
with 10-fold cross validation for model selection. Cross-validation is used to pro-
duce honest (i.e. approximately unbiased) estimates of the error of fitted models.

Friedman’s GradientBoost procedure uses additive (ANOVA-type) expan-
sions of F (x), which consist of main e↵ects and second-, third-, and higher-order
interaction terms

F (x) =
X

j

fj(xj) +
X

j,k

fjk(xj , xk) +
X

j,k,l

fjkl(xj , xk, xl) + (2)

While the interaction terms may include two-way, three-way, or even higher-
order interactions, care must be taken when fitting the model to (finite) training
sets to avoid over-fitting, which has a negative e↵ect on the ability of the predic-
tor to generalize; that is, to produce reasonable predictions from input variables
not already in the training set. The GradientBoost procedure uses two regular-

ization techniques to limit the risk of over-fitting. The first is to limit the number
of terms M included in the additive expansion (2), and the second (essentially)
multiplies the predicted values associated with each of the fitted terms by a
learning rate parameter, which slows the optimization process through incre-

mental shrinkage, reduces the risk of converging to (sub-optimal) local minima,
and (essentially) determines the e↵ective number of (unique) trees K in the final
predictor. There is an inverse relationship between these two control parameters,

such that solutions with a larger number of additive components are more likely
to converge successfully when a smaller learning rate is used, and vice versa [15].
Naturally, there is still a risk of over-fitting and approximately optimal values of
K and M must be selected from the range of candidate values. We use 10-fold
cross validation for this purpose. In k-fold cross validation (in our case, k=10),
the training dataset is randomly partitioned into k subsets of approximately
equal size. k di↵erent models are then constructed, each using (k � 1) of the k

partitions as training input so that 1 of the k sets can be set aside for model
validation. Each of the k models are then validated against the validation set
and the model that yields the minimum error is selected.

MART was selected in part because the regression trees, upon which the tech-
nique is based, are computationally e�cient, relatively robust to missing data
and monotone transformations of the input variables, and allow us to make very
minimal smoothness assumptions (see [8,9]). We describe the training set, error
estimates and the predictive accuracy of our fitted models on real application
hotspots in Section 3.

2.3 Computational Characterization

In order to develop models that capture a computation’s sensitivity to per core
bandwidth we need to first capture low-level details of how an application inter-
acts with and exercises the underlying hardware subcomponents or application
characterizations. We develop these detailed characterizations by gathering what
we will refer to as an application signature. These signatures are collected by
a set of static and dynamic binary analysis tools and include per basic-block,
per loop and per function information. This information consists of the opera-
tions required by the application in the form of instruction mix and counts, data
locality properties, metrics that capture the application’s interaction with the
memory subsystem such as cache hit rates, load and store operations, etc.

At the center of the characterization and analysis tool-suite is our x86 binary
instrumentation toolkit, PEBIL [21]. PEBIL works directly on the binary and
there is no re-compilation or re-linking required – steps we wish to avoid because
they can interfere with the original behavior of the application. The fact that
PEBIL works on the binary directly also makes the use of the tools easy to use
on large-scale applications.
Static Analysis : The static analysis tool written on top of PEBIL produces infor-
mation about the approximate structure of the program and the operations that
occur within those structures (e.g., functions and loops). The tool also records
type and size of classes of operations (e.g., memory and floating operations) that
are within those control structures. The static analysis tool records the average
size of memory operands in each block and measures the number of instructions
between register or memory definitions and their usage (i.e., data dependencies).
Dynamic Analysis: To gather detailed information about data movement within
an application, the memory characterization tool written on top of PEBIL in-
struments every memory access in the application and pipes the address stream

to be processed on-the-fly by a series of di↵erent tools (e.g. reuse distance cal-
culation, working set size analysis and a cache simulator for system of interest).
The cache simulator tool, for example, produces the cache hit rates for a set of
target systems of interest for each of the application’s loops. Another dynamic
analysis tool keeps visit count information for the application’s control units
(e.g., basic block visit counts). Visit count information when combined with the
static instruction mix information gives detailed information on the instruction
make-up of the application.

The characterization data is managed using an SQL relational database. All
the static and dynamic data for an application is collected into the database,
which can be queried for computational characterization information that form
the application signature. The signature includes an entry for each of the control
structure units of a given application (such as basic blocks) and consists of
information about instruction mix, cache behavior, data dependencies, etc.

3 Results

We utilized the test system and the modeling methodology to investigate the
performance sensitivity of HPC applications to the reduced per core memory
bandwidth. The test system (described in Section 2.1) was used to both train
and validate the models (see Section 3.1). We then evaluated our models on a
set of real applications and the results are presented in Sections 3.2 and 3.3.

3.1 Model Training

To create a model that captures how the performance of various types of com-
putations are a↵ected by reduced per core memory bandwidth, we use a set
of benchmarks along with source code transformation frameworks to generate
a diverse set of small computations to train the model. The benchmarks come
from pcubed benchmarking framework [22], which can be configured to yield
computations with specific computational, memory, and data flow properties.
We supplement these pcubed loops with kernels derived from di↵erent compu-
tational domains – dense linear algebra (e.g. matrix-matrix multiplication and
matrix-vector multiplication), stencil computations, etc. In addition, for some
of the kernels, we generate variants using two source-to-source compiler trans-
formation tools – Orio [25] and CHiLL [11]. Some of the optimizations that we
used to generate these variants include loop unrolling, cache/register tiling and
scalar replacement. Each of these variants is configured to run with multiple
working set sizes. Together with pcubed, kernels and kernel variants, we had
a total of 2900 computations that formed our training set. All of the training
computations were timed using the three memory bus frequency settings on the
test system. We take six measurements for each; we discard the min and max
measurements and average the remaining four. Also, for each test we generate a
characterization signature using the tools described in Section 2.3.

Predictive models are constructed using the machine learning problem pre-
sented in Equation 3. The predictors listed in right hand side of the equation
show the entries that make up a loop signature. mem freq is the memory bus
frequency and d1m, d2m, d3m are the number of memory accesses per instruction
that hit on L1, L2 and L3 caches respectively. dmm is the number of accesses per
instruction that miss on L3. loads, stores, int ops and branch ops are the
number load, store, integer and branch operations per instruction. fprat is the
the ratio of the number of floating point operations to the number of memory
operations. fops ins is the number of floating point operations per instruction.
int dud and fp dud are integer and floating point def-use distances respectively.
The outcome (degradation) is log-transformed to stabilize the residual variance.

log(degradation) = F (mem freq, d1m, d2m, d3m, dmm, loads, stores, int ops

branch ops, fprat, fops ins, int dud, fp dud)
(3)

We use 10-fold cross validation for model selection, optimizing both the number
of trees and the interaction depth empirically via a parameter sweep. The model
reported here is based on b

K = 800 trees, each with an interaction depth of
at most c

M = 5, where both b
K and c

M were selected by cross validation, as
described in Section 2.2. Squared error loss is used to fit the multiple additive
regression tree model. The model selected via the 10-fold cross-validation is then
used to make predictions for all the points in the training set. The predictions
are highly accurate with just 2% absolute mean error.

3.2 Model Evaluation on Real Applications

We evaluated the predictive capability of the model on real applications at a
fine grain level by looking at the individual computational phases or loops of
the applications. Our evaluation application suite consisted of the following ap-
plications: 1) four benchmarks (CG, MG, LU and FT) from the NAS parallel
benchmarks [4], 2) miniFE and miniGhost from the Mantevo benchmarks [1],
3) AMG2006 [28], which is parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids, and 4) SMG2000 [10], which is a
parallel semicoarsening multigrid solver for the linear systems arising discretiza-
tions of the di↵usion equation. miniFE is a finite-element mini-application that
implements kernels representative of unstructured, implicit finite-element appli-
cations. miniGhost is a Finite Di↵erence mini-application which implements a
di↵erence stencil across a homogenous 3D domain.

We started by generating the characterization signatures for the applications
using our analysis tool-suite. We identified a total of 42 computational phases or
hotspots in these applications. Using a loop timer tool built on top of PEBIL, we
instrumented the binaries to collect timing information for each of these loops
to verify the models. We then executed the applications using the three bus
frequency configurations.

To evaluate the models, we fed the characterization signatures for the ap-
plication’s hotspots to our model to predict the performance degradation when

Histogram −− Prediction Accuracy on Real Application Phases

Absolute Mean Error (%)

C
ou

nt
 (o

r n
um

be
r o

f p
ha

se
s)

0 5 10 15

0
10

20
30

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800 900 1000 1100 1200 1300 1400Ti
m

e
w

rt
to

 th
e

hi
gh

es
t (

13
33

 M
H

z)
 F

re
qu

en
cy

Memory Bus Frequency (MHz)

Mantevo Miniapps (MiniGhost and MiniFE), 16 Cores
 Performance Sensitivity of dominant phases (256 x 256 x 256)

measured miniGhost (P1)
modeled miniGhost (P1)

measured miniFE (P1)
modeled miniFE (P1)

(a) (b)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800 900 1000 1100 1200 1300 1400Ti
m

e
w

rt
to

 th
e

hi
gh

es
t (

13
33

 M
H

z)
 F

re
qu

en
cy

Memory Bus Frequency (MHz)

AMG, 16 Cores
 Performance Sensitivity of 4 dominant phases (256 x 256 x 256)

measured (P1)
modeled (P1)

measured (P2)
modeled (P2)

measured (P3)
modeled (P3)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800 900 1000 1100 1200 1300 1400Ti
m

e
w

rt
to

 th
e

hi
gh

es
t (

13
33

 M
H

z)
 F

re
qu

en
cy

Memory Bus Frequency (MHz)

SMG2000, 16 Cores
 1 Phase, 2 input sizes (64x64x64 and 128x128x128)

measured (P1-64)
modeled (P1-64)

measured (P1-128)
modeled (P1-128)

(c) (d)

Fig. 2. (a) Overall prediction accuracy for application phases. (b), (c) and (d) demon-
strate the accuracy of models on di↵erent application behaviors.

running at the two lower frequencies. Overall prediction results (histogram) are
shown in Figure 2(a). Note that the error calculation reported here are ‘out of
sample’, i.e., the characterization signatures for the application hotspots are not
seen during the model training process and thereby demonstrates the predictive
accuracy of our models. Overall the models predict the outcome well – average
absolute mean error is 4%. For more than 91% of the application hotspots, the
prediction error is less than 10%. Some of the outlying hotspots with higher
error rates have at least one characteristics in common – the per visit time on
these loops is very small. So, it is possible that the method we use to measure
time does not accurately capture the time spent on these loops.

After validating the models, we used the models to investigate the behav-
ior of the di↵erent computational phases within the applications. Figure 2(b)
shows that di↵erent applications of the same benchmark suite (e.g. mantevo)
can exhibit di↵erent reduced memory bandwidth sensitivity and that our model
accurately predicts those sensitivities. In particular, miniFE’s key hotspot con-
sists of an sparse matrix product, with the matrix stored in compressed sparse
row format. Indirect addressing and random memory access patterns thus make
this hotspot highly sensitive to the memory bandwidth.

We also looked at the diversity of computational phases within a single ap-
plication. Figure 2(c) shows the results for the three most dominant loops in
AMG2006. These three phases have di↵erent sensitivity to reduced bandwidth
and our models accurately capture this behavior. The figure also shows that
applications are comprised of phases that exhibit di↵erent sensitivities and that
only fine-grained models can capture the complex behavior in these applications.

Finally, the working set size can also impact how individual phases react to
reductions in memory bandwidth. In Figure 2(d) we investigate a single phase of
the SMG2000 application to analyze how its sensitivity changes as the problem
size is changed. The figure illustrates how the model is able to accurately capture
the change in the phase’s sensitivity as the application’s input size is changed.

3.3 Algorithm Selection

We applied our framework to HYPRE [14], a library for solving large sparse lin-
ear systems of equations. With this set of experiments, we want to demonstrate
how our models can accurately predict bandwidth sensitivity scores for di↵erent
solver implementations and thereby help developers select and/or design algo-
rithmic implementations that are less sensitive to reduced memory bandwidth
for future multi-core systems.

We focused on the linear algebraic System (IJ) interface, which provides
access to general sparse matrix solvers. We selected three best-performing solvers
– Algebraic Multigrid (AMG), Parasails and hybrid-AMG. Solver choice can be
made at run-time and to isolate just the phases related to di↵erent algorithms, we
first profiled the three runs using di↵erent algorithms to eliminate the common
phases or loops (only those that have the same computational properties). We
then timed these phases at the highest frequency and used our model to predict
how reduced per core memory bandwidth a↵ects the unique phases in each of the
solver instantiations. Results for the analyzed phases are presented in Table 1.
The predictions that our model makes are, at worst, o↵ by 3.6%. Parasails is the
best solver for our test system and beats the second best choice (hybrid-AMG)
by 1.28x. It is, however, also the most sensitive to the reduced bandwidth –
slowing down by 1.37x when run at 800MHz bus frequency. hybrid-AMG, on
the other hand, is the least sensitive. The speedup advantage Parasails has on
hybrid-AMG diminishes to 1.09x at 800MHz. If we were to make a reasonable
assumption that on future many-core systems the per core memory bandwidth
will be below the range that we could simulate using our test system, then
hybrid-AMG solver will deliver better performance for those systems.

Table 1. Exploring the choices of solver algorithms – all times in seconds and the
(slowdown) is wrt to time @1333MHz.

Algo Measured Measured Predicted % Error Measured Predicted % Error

Time@1333 Time@1067 Time@1067 @1067 Time@800 Time@800 @800

(slowdown) (slowdown) (slowdown) (slowdown)

AMG 2.96 3.14 (1.06) 3.18 (1.07) 1.08 3.46 (1.17) 3.59 (1.21) 3.76

Parasails 2.06 2.29 (1.11) 2.30 (1.11) 0.40 2.84 (1.37) 2.87 (1.39) 1.06

hybrid-AMG 2.85 2.99 (1.05) 3.04 (1.07) 1.65 3.28 (1.15) 3.40 (1.19) 3.58

4 Related Work

Many researchers have investigated the idea of utilizing di↵erent power states of
memory modules for greater energy e�ciency [13, 23, 26]. These e↵orts exploit
memory stalls to drive their optimization for energy usage. Our work is distinct
in that we take a model-based approach to predict performance degradation at
di↵erent bus frequencies; these models should enable fine-grain optimizations.
Deng et al. [12] use DVFS techniques to limit main memory energy consumption
on single- and multi-core systems. They utilize modeling to determine optimal
DVFS settings for the applications. Our work is distinct from theirs in that they
use a simulator rather than a real system. Thus, they are restricted to small ex-
ecutions (e.g. <100M instructions), whereas our work models large applications
for the full execution and validates the models on a real system.

Performance models for HPC applications have been utilized to improve sys-
tem designs, inform procurements, and guide application tuning [3,17,19]. Ker-
byson et al. [20] utilize application-specific knowledge to construct performance
models. These models are highly accurate, however, the mostly manual model-
ing exercise has to be largely repeated when the structure of the code or the
algorithmic implementation changes. Vetter et al. [2] combine analytical and
empirical modeling approaches to incrementally construct realistic and accurate
performance models. Code modification must be made in the form of adding
annotations or “modeling assertions” around key application constructs. Oth-
ers [5, 16, 27] have also used application-specific approaches to generate perfor-
mance and power models, however, they are di�cult to automate and generalize
because they require guidance from domain experts. Our models do not assume
any domain- or application-specific knowledge and strictly base their predictions
on what they learn about the computational properties of the application.

There has also been work done on using model-based methodology to pre-
dict the scalability of HPC applications. Barnes et al. [6] use regression-based
approaches on training data consisting of execution observations with di↵erent
input sets on a small subset of the processors and use the models to predict
performance on a larger number of processors. Others [18] have used machine
learning to model input parameter sensitivity of HPC applications. These mod-
eling techniques are application-specific and the training points for regression
and machine learning are drawn from the application’s input parameter space.

5 Conclusion

This paper presented a model-based framework that accurately models the indi-
vidual computational loops or phases within large-scale applications sensitivity
to reduced per-core memory bandwidth – a phenomenon which we anticipate
will be further exacerbated as systems scale up the number of cores on a proces-
sor. Our framework assumes no domain-specific knowledge about the application
and strictly makes predictions about the memory bandwidth sensitivity of the
application’s phases based on characterization information that we can collect

using our binary analysis tools. We evaluated the framework using various sci-
entific workloads and showed that the framework accurately predicts (<5% ab-
solute mean error in prediction) how sensitive the diverse phases and algorithms
within these workloads are to the reduced per core memory bandwidth.

Acknowledgements

This work was supported in part by the DOE O�ce of Science, Advanced Sci-
entific Computing Research, under award number 62855 “Beyond the Standard
Model – Towards an Integrated Modeling Methodology for the Performance and
Power”; PNNL lead institution; Program Manager Sonia Sachs. The authors ac-
knowledge partial support from LLNL under subcontract B600667. This work
was also supported in part by the DoD and used elements at the Extreme Scale
Systems Center, located at ORNL and funded by the DoD. Partial support also
came from the DOE O�ce of Science through the SciDAC award titled SUPER
(Institute for Sustained Performance, Energy and Resilience). Part of this work
was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

1. Mantevo Project. http://mantevo.org/.
2. S. Alam and J. Vetter. A framework to develop symbolic performance models

of parallel applications. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, page 8 pp., april 2006.

3. D. Bailey and A. Snavely. Performance modeling: Understanding the present and
predicting the future. In Proceedings of SIAM PP04, 2005.

4. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Si-
mon, V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel benchmarks–
summary and preliminary results. In Proceedings of the 1991 ACM/IEEE confer-
ence on Supercomputing, Supercomputing ’91, New York, NY, USA, 1991. ACM.

5. K. Barker, K. Davis, and D. Kerbyson. Performance modeling in action: Perfor-
mance prediction of a cray xt4 system during upgrade. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.

6. B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski, and
M. Schulz. A regression-based approach to scalability prediction. In Proceedings
of the 22nd annual international conference on Supercomputing, ICS ’08.

7. K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Fran-
zon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick.
Exascale computing study: Technology challenges in achieving exascale systems.
www.cse.nd.edu/Reports/2008TR-2008-13.pdf, 2008.

8. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
9. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Re-

gression Trees. Chapman & Hall, CRC, 1984.

10. P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening Multigrid on Dis-
tributed Memory Machines. SIAM J. Sci. Comput., 21(5):1823–1834, 2000.

11. C. Chen, J. Chame, and M. W. Hall. CHiLL: A framework for composing high-level
loop transformations. TR 08-897, Univ. of Southern California, Jun 2008.

12. Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. Coscale:
Coordinating cpu and memory system dvfs in server systems. In 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2012.

13. B. Diniz, D. Guedes, W. Meira Jr, and R. Bianchini. Limiting the power consump-
tion of main memory. In ACM SIGARCH Computer Architecture News, volume 35,
pages 290–301. ACM, 2007.

14. R. D. Falgout and U. M. Yang. hypre: a library of high performance precondition-
ers. In Preconditioners, Lecture Notes in Computer Science, 2002.

15. J. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29(5):1189–1232, 2001.

16. T. Hoefler. Bridging performance analysis tools and analytic performance modeling
for HPC. In Proceedings of the 2010 conference on Parallel processing, Euro-Par
2010, pages 483–491, Berlin, Heidelberg, 2011. Springer-Verlag.

17. A. Hoisie, D. J. Kerbyson, C. L. Mendes, D. A. Reed, and A. Snavely. Special
section: Large-scale system performance modeling and analysis. Future Generation
Comp. Syst., 22(3):291–292, 2006.

18. E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee. An approach to perfor-
mance prediction for parallel applications. In Proceedings of the 11th international
Euro-Par conference on Parallel Processing, Euro-Par’05, 2005.

19. D. Kerbyson, A. Vishnu, K. Barker, and A. Hoisie. Codesign challenges for exascale
systems: Performance, power, and reliability. Computer, 44(11):37 –43, nov. 2011.

20. D. J. Kerbyson and P. W. Jones. A performance model of the parallel ocean
program. Int. J. High Perform. Comput. Appl., 19(3):261–276, Aug. 2005.

21. M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely. Pebil: E�cient static
binary instrumentation for linux. In Performance Analysis of Systems Software
(ISPASS), 2010 IEEE International Symposium on, pages 175 –183, march 2010.

22. M. A. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. M. Tikir, and
S. Poole. Reducing energy usage with memory and computation-aware dynamic
frequency scaling. In Proceedings of the 17th international conference on Parallel
processing - Volume Part I, Euro-Par’11, pages 79–90. Springer-Verlag, 2011.

23. A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation. ACM
SIGPLAN Notices, 35(11):105–116, 2000.

24. L. McVoy and C. Staelin. lmbench: portable tools for performance analysis. In Pro-
ceedings of the 1996 annual conference on USENIX Annual Technical Conference,
ATEC ’96, pages 23–23, Berkeley, CA, USA, 1996. USENIX Association.

25. B. Norris, A. Hartono, and W. Gropp. Annotations for productivity and perfor-
mance portability. In Petascale Computing: Algorithms and Applications, Compu-
tational Science, pages 443–462. Chapman & Hall / CRC Press, 2007.

26. V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. Dma-aware memory energy
management. In HPCA, volume 6, pages 133–144, 2006.

27. A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely. Modeling power and
energy usage of hpc kernels. In Proceedings of the Eighth Workshop on High-
Performance, Power-Aware Computing 2012, HPPAC ’12, 2012.

28. U. Yang. Parallel algebraic multigrid methods in high performance preconditioners.
In A. Bruaset and A. Tveito, editors, Numerical Solution of Partial Di↵erential
Equations on Parallel Computers, volume 51 of Lecture Notes in Computational
Science and Engineering. Springer Berlin Heidelberg, 2006.

